Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
2.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292677

RESUMO

Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the cellular and physiological mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic toxins, many of which are ligands for the aryl hydrocarbon receptor (AHR), are associated with adverse limb outcomes in PAD. We hypothesized that chronic AHR activation, driven by the accumulation of tryptophan-derived uremic metabolites, may mediate the myopathic condition in the presence of CKD and PAD. Both PAD patients with CKD and mice with CKD subjected to femoral artery ligation (FAL) displayed significantly higher mRNA expression of classical AHR-dependent genes ( Cyp1a1 , Cyp1b1 , and Aldh3a1 ) when compared to either muscle from the PAD condition with normal renal function ( P <0.05 for all three genes) or non-ischemic controls. Skeletal-muscle-specific AHR deletion in mice (AHR mKO ) significantly improved limb muscle perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and contractile function, as well as enhanced mitochondrial oxidative phosphorylation and respiratory capacity in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. These findings establish chronic AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in PAD. Further, the totality of the results provide support for testing of clinical interventions that diminish AHR signaling in these conditions.

3.
Circ Res ; 133(2): 158-176, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37325935

RESUMO

BACKGROUND: Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS: AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS: PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS: These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.


Assuntos
Doenças Musculares , Doença Arterial Periférica , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Isquemia/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Doença Arterial Periférica/genética , Doença Arterial Periférica/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
4.
Free Radic Biol Med ; 194: 23-32, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436728

RESUMO

Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Disfunção Ventricular Esquerda , Animais , Camundongos , Diafragma , Insuficiência Cardíaca/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Infarto do Miocárdio/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/metabolismo
5.
Exp Physiol ; 107(11): 1312-1325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35938289

RESUMO

NEW FINDINGS: What is the central question of this study? This study addresses whether a high-fat, high-sucrose diet causes cardiac and diaphragm muscle abnormalities in male rats and whether supplementation with the antioxidant N-acetylcysteine reverses diet-induced dysfunction. What is the main finding and its importance? N-Acetylcysteine attenuated the effects of high-fat, high-sucrose diet on markers of cardiac hypertrophy and diastolic dysfunction, but neither high-fat, high-sucrose diet nor N-acetylcysteine affected the diaphragm. These results support the use of N-acetylcysteine to attenuate cardiovascular dysfunction induced by a 'Western' diet. ABSTRACT: Individuals with overweight or obesity display respiratory and cardiovascular dysfunction, and oxidative stress is a causative factor in the general aetiology of obesity and of skeletal and cardiac muscle pathology. Thus, this preclinical study aimed to define diaphragmatic and cardiac morphological and functional alterations in response to an obesogenic diet in rats and the therapeutic potential of an antioxidant supplement, N-acetylcysteine (NAC). Young male Wistar rats consumed ad libitum a 'lean' or high-saturated fat, high-sucrose (HFHS) diet for ∼22 weeks and were randomized to control or NAC (2 mg/ml in the drinking water) for the last 8 weeks of the dietary intervention. We then evaluated diaphragmatic and cardiac morphology and function. Neither HFHS diet nor NAC supplementation affected diaphragm-specific force, peak power or morphology. Right ventricular weight normalized to estimated body surface area, left ventricular fractional shortening and posterior wall maximal shortening velocity were higher in HFHS compared with lean control animals and not restored by NAC. In HFHS rats, the elevated deceleration rate of early transmitral diastolic velocity was prevented by NAC. Our data showed that the HFHS diet did not compromise diaphragmatic muscle morphology or in vitro function, suggesting other possible contributors to breathing abnormalities in obesity (e.g., abnormalities of neuromuscular transmission). However, the HFHS diet resulted in cardiac functional and morphological changes suggestive of hypercontractility and diastolic dysfunction. Supplementation with NAC did not affect diaphragm morphology or function but attenuated some of the cardiac abnormalities in the rats receiving the HFHS diet.


Assuntos
Acetilcisteína , Sacarose , Animais , Masculino , Ratos , Acetilcisteína/uso terapêutico , Antioxidantes/uso terapêutico , Dieta Hiperlipídica , Ácidos Graxos , Obesidade , Ratos Wistar , Músculos Respiratórios
6.
Cells ; 11(15)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892589

RESUMO

Cardiomyocyte dysfunction in patients with end-stage heart failure with reduced ejection fraction (HFrEF) stems from mitochondrial dysfunction, which contributes to an energetic crisis. Mitochondrial dysfunction reportedly relates to increased markers of oxidative stress, but the impact of reversible thiol oxidation on myocardial mitochondrial function in patients with HFrEF has not been investigated. In the present study, we assessed mitochondrial function in ventricular biopsies from patients with end-stage HFrEF in the presence and absence of the thiol-reducing agent dithiothreitol (DTT). Isolated mitochondria exposed to DTT had increased enzyme activity of complexes I (p = 0.009) and III (p = 0.018) of the electron transport system, while complexes II (p = 0.630) and IV (p = 0.926) showed no changes. However, increased enzyme activity did not carry over to measurements of mitochondrial respiration in permeabilized bundles. Oxidative phosphorylation conductance (p = 0.439), maximal respiration (p = 0.312), and ADP sensitivity (p = 0.514) were unchanged by 5 mM DTT treatment. These results indicate that mitochondrial function can be modulated through reversible thiol oxidation, but other components of mitochondrial energy transfer are rate limiting in end-stage HFrEF. Optimal therapies to normalize cardiac mitochondrial respiration in patients with end-stage HFrEF may benefit from interventions to reverse thiol oxidation, which limits complex I and III activities.


Assuntos
Insuficiência Cardíaca , Fosforilação Oxidativa , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Volume Sistólico , Compostos de Sulfidrila/metabolismo
7.
Nitric Oxide ; 122-123: 54-61, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405336

RESUMO

Nitric oxide (NO) is complex modulator of skeletal muscle contractile function, capable of increasing or decreasing force and power output depending on multiple factors. This review explores the effects and potential mechanisms for modulation of skeletal muscle contractile function by NO, from pharmacological agents in isolated muscle preparations to dietary nitrate supplementation in humans and animals. Pharmacological manipulation in vitro suggests that NO signaling diminishes submaximal isometric force, whereas dietary manipulation in vivo suggest that NO enhances submaximal force. The bases for these different responses are unknown but could reflect dose-dependent effects. Maximal isometric force is unaffected by physiologically relevant levels of NO, which do not induce overt protein oxidation. Pharmacological and dietary manipulation of NO signaling enhances the maximal rate of isometric force development, unloaded shortening velocity, and peak power. We hypothesize that these effects are mediated by post-translational modifications of myofibrillar proteins that modulate thick filament regulation of contraction (e.g., mechanosensing and strain-dependence of cross-bridge kinetics). NO effects on contractile function appear to have some level of fiber type and sex-specificity. The mechanisms behind NO-mediated changes in skeletal muscle function need to be explored through proteomics analysis and advanced biophysical assays to advance the development of small molecules and open intriguing therapeutic and ergogenic possibilities for aging, disease, and athletic performance.


Assuntos
Contração Muscular , Óxido Nítrico , Animais , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Sarcômeros
8.
J Appl Physiol (1985) ; 132(1): 106-125, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792407

RESUMO

Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.


Assuntos
Insuficiência Cardíaca , Doenças Musculares , Animais , Feminino , Humanos , Peróxido de Hidrogênio , Pós-Menopausa , Qualidade de Vida , Ratos , Ratos Endogâmicos WKY , Volume Sistólico
9.
Cell Physiol Biochem ; 55(4): 489-504, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416105

RESUMO

BACKGROUND/AIMS: Diaphragm dysfunction with increased reactive oxygen species (ROS) occurs within 72 hrs post-myocardial infarction (MI) in mice and may contribute to loss of inspiratory maximal pressure and endurance in patients. METHODS: We used wild-type (WT) and whole-body Nox4 knockout (Nox4KO) mice to measure diaphragm bundle force in vitro with a force transducer, mitochondrial respiration in isolated fiber bundles with an O2 sensor, mitochondrial ROS by fluorescence, mRNA (RT-PCR) and protein (immunoblot), and fiber size by histology 72 hrs post-MI. RESULTS: MI decreased diaphragm fiber cross-sectional area (CSA) (~15%, p = 0.015) and maximal specific force (10%, p = 0.005), and increased actin carbonylation (5-10%, p = 0.007) in both WT and Nox4KO. Interestingly, MI did not affect diaphragm mRNA abundance of MAFbx/atrogin-1 and MuRF-1 but Nox4KO decreased it by 20-50% (p < 0.01). Regarding the mitochondria, MI and Nox4KO decreased the protein abundance of citrate synthase and subunits of electron transport system (ETS) complexes and increased mitochondrial O2 flux (JO2) and H2O2 emission (JH2O2) normalized to citrate synthase. Mitochondrial electron leak (JH2O2/JO2) in the presence of ADP was lower in Nox4KO and not changed by MI. CONCLUSION: Our study shows that the early phase post-MI causes diaphragm atrophy, contractile dysfunction, sarcomeric actin oxidation, and decreases citrate synthase and subunits of mitochondrial ETS complexes. These factors are potential causes of loss of inspiratory muscle strength and endurance in patients, which likely contribute to the pathophysiology in the early phase post-MI. Whole-body Nox4KO did not prevent the diaphragm abnormalities induced 72 hrs post-MI, suggesting that systemic pharmacological inhibition of Nox4 will not benefit patients in the early phase post-MI.


Assuntos
Diafragma/enzimologia , Mitocôndrias Musculares/enzimologia , Contração Muscular , Atrofia Muscular/enzimologia , Infarto do Miocárdio/enzimologia , NADPH Oxidase 4/deficiência , Animais , Diafragma/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , NADPH Oxidase 4/metabolismo
10.
Physiol Rep ; 9(14): e14979, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34309237

RESUMO

Sepsis induces a myopathy characterized by loss of muscle mass and weakness. Septic patients undergo prolonged periods of limb muscle disuse due to bed rest. The contribution of limb muscle disuse to the myopathy phenotype remains poorly described. To characterize sepsis-induced myopathy with hindlimb disuse, we combined the classic sepsis model via cecal ligation and puncture (CLP) with the disuse model of hindlimb suspension (HLS) in mice. Male C57bl/6j mice underwent CLP or SHAM surgeries. Four days after surgeries, mice underwent HLS or normal ambulation (NA) for 7 days. Soleus (SOL) and extensor digitorum longus (EDL) were dissected for in vitro muscle mechanics, morphological, and histological assessments. In SOL muscles, both CLP+NA and SHAM+HLS conditions elicited ~20% reduction in specific force (p < 0.05). When combined, CLP+HLS elicited ~35% decrease in specific force (p < 0.05). Loss of maximal specific force (~8%) was evident in EDL muscles only in CLP+HLS mice (p < 0.05). CLP+HLS reduced muscle fiber cross-sectional area (CSA) and mass in SOL (p < 0.05). In EDL muscles, CLP+HLS decreased absolute mass to a smaller extent (p < 0.05) with no changes in CSA. Immunohistochemistry revealed substantial myeloid cell infiltration (CD68+) in SOL, but not in EDL muscles, of CLP+HLS mice (p < 0.05). Combining CLP with HLS is a feasible model to study sepsis-induced myopathy in mice. Hindlimb disuse combined with sepsis induced muscle dysfunction and immune cell infiltration in a muscle dependent manner. These findings highlight the importance of rehabilitative interventions in septic hosts to prevent muscle disuse and help attenuate the myopathy.


Assuntos
Elevação dos Membros Posteriores/efeitos adversos , Músculo Esquelético/fisiopatologia , Transtornos Musculares Atróficos/fisiopatologia , Sepse/fisiopatologia , Animais , Membro Posterior/patologia , Elevação dos Membros Posteriores/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Doenças Musculares/etiologia , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/patologia , Sepse/complicações , Sepse/patologia
11.
Gene ; 770: 145356, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33333219

RESUMO

The diaphragm is the main inspiratory muscle, and the chronic phase post-myocardial infarction (MI) is characterized by diaphragm morphological, contractile, and metabolic abnormalities. However, the mechanisms of diaphragm weakness are not fully understood. In the current study, we aimed to identify the transcriptome changes associated with diaphragm abnormalities in the chronic stage MI. We ligated the left coronary artery to cause MI in rats and performed RNA-sequencing (RNA-Seq) in diaphragm samples 16 weeks post-surgery. The sham group underwent thoracotomy and pericardiotomy but no artery ligation. We identified 112 differentially expressed genes (DEGs) out of a total of 9664 genes. Myocardial infarction upregulated and downregulated 42 and 70 genes, respectively. Analysis of DEGs in the framework of skeletal muscle-specific biological networks suggest remodeling in the neuromuscular junction, extracellular matrix, sarcomere, cytoskeleton, and changes in metabolism and iron homeostasis. Overall, the data are consistent with pathological remodeling of the diaphragm and reveal potential biological targets to prevent diaphragm weakness in the chronic stage MI.


Assuntos
Diafragma/metabolismo , Proteínas Musculares/biossíntese , Infarto do Miocárdio/metabolismo , RNA-Seq , Transcriptoma , Animais , Diafragma/patologia , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
12.
JCI Insight ; 6(1)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33290279

RESUMO

Chronic kidney disease (CKD) causes progressive skeletal myopathy involving atrophy, weakness, and fatigue. Mitochondria have been thought to contribute to skeletal myopathy; however, the molecular mechanisms underlying muscle metabolism changes in CKD are unknown. We employed a comprehensive mitochondrial phenotyping platform to elucidate the mechanisms of skeletal muscle mitochondrial impairment in mice with adenine-induced CKD. CKD mice displayed significant reductions in mitochondrial oxidative phosphorylation (OXPHOS), which was strongly correlated with glomerular filtration rate, suggesting a link between kidney function and muscle mitochondrial health. Biochemical assays uncovered that OXPHOS dysfunction was driven by reduced activity of matrix dehydrogenases. Untargeted metabolomics analyses in skeletal muscle revealed a distinct metabolite profile in CKD muscle including accumulation of uremic toxins that strongly associated with the degree of mitochondrial impairment. Additional muscle phenotyping found CKD mice experienced muscle atrophy and increased muscle protein degradation, but only male CKD mice had lower maximal contractile force. CKD mice had morphological changes indicative of destabilization in the neuromuscular junction. This study provides the first comprehensive evaluation of mitochondrial health in murine CKD muscle to our knowledge and uncovers several unknown uremic metabolites that strongly associate with the degree of mitochondrial impairment.


Assuntos
Mitocôndrias Musculares/metabolismo , Insuficiência Renal Crônica/metabolismo , Uremia/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Fosforilação Oxidativa , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Uremia/complicações
13.
J Mol Cell Cardiol ; 139: 238-249, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32035137

RESUMO

Inspiratory dysfunction occurs in patients with heart failure with reduced ejection fraction (HFrEF) in a manner that depends on disease severity and by mechanisms that are not fully understood. In the current study, we tested whether HFrEF effects on diaphragm (inspiratory muscle) depend on disease severity and examined putative mechanisms for diaphragm abnormalities via global and redox proteomics. We allocated male rats into Sham, moderate (mHFrEF), or severe HFrEF (sHFrEF) induced by myocardial infarction and examined the diaphragm muscle. Both mHFrEF and sHFrEF caused atrophy in type IIa and IIb/x fibers. Maximal and twitch specific forces (N/cm2) were decreased by 19 ± 10% and 28 ± 13%, respectively, in sHFrEF (p < .05), but not in mHFrEF. Global proteomics revealed upregulation of sarcomeric proteins and downregulation of ribosomal and glucose metabolism proteins in sHFrEF. Redox proteomics showed that sHFrEF increased reversibly oxidized cysteine in cytoskeletal and thin filament proteins and methionine in skeletal muscle α-actin (range 0.5 to 3.3-fold; p < .05). In conclusion, fiber atrophy plus contractile dysfunction caused diaphragm weakness in HFrEF. Decreased ribosomal proteins and heighted reversible oxidation of protein thiols are candidate mechanisms for atrophy or anabolic resistance as well as loss of specific force in sHFrEF.


Assuntos
Diafragma/metabolismo , Diafragma/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Proteômica , Volume Sistólico , Actinas/metabolismo , Animais , Masculino , Metionina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Oxirredução , Ratos Sprague-Dawley
14.
J Physiol ; 598(19): 4357-4369, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33460123

RESUMO

KEY POINTS: Respiratory muscle function declines with ageing, contributing to breathing complications in the elderly. Here we report greater in vitro respiratory muscle contractile function in old mice receiving supplemental NaNO3 for 14 days compared with age-matched controls. Myofibrillar protein phosphorylation, which enhances contractile function, did not change in our study - a finding inconsistent with the hypothesis that this post-translational modification is a mechanism for dietary nitrate to improve muscle contractile function. Nitrate supplementation did not change the abundance of calcium-handling proteins in the diaphragm of old mice, in contrast with findings from the limb muscles of young mice in previous studies. Our findings suggest that nitrate supplementation enhances myofibrillar protein function without affecting the phosphorylation status of key myofibrillar proteins. ABSTRACT: Inspiratory muscle (diaphragm) function declines with age, contributing to ventilatory dysfunction, impaired airway clearance, and overall decreased quality of life. Diaphragm isotonic and isometric contractile properties are reduced with ageing, including maximal specific force, shortening velocity and peak power. Contractile properties of limb muscle in both humans and rodents can be improved by dietary nitrate supplementation, but effects on the diaphragm and mechanisms behind these improvements remain poorly understood. One potential explanation underlying the nitrate effects on contractile properties is increased phosphorylation of myofibrillar proteins, a downstream outcome of nitrate reduction to nitrite and nitric oxide. We hypothesized that dietary nitrate supplementation would improve diaphragm contractile properties in aged mice. To test our hypothesis, we measured the diaphragm function of old (24 months) mice allocated to 1 mm NaNO3 in drinking water for 14 days (n = 8) or untreated water (n = 6). The maximal rate of isometric force development (∼30%) and peak power (40%) increased with nitrate supplementation (P < 0.05). There were no differences in the phosphorylation status of key myofibrillar proteins and abundance of Ca2+-release proteins in nitrate vs. control animals. In general, our study demonstrates improved diaphragm contractile function with dietary nitrate supplementation and supports the use of this strategy to improve inspiratory function in ageing populations. Additionally, our findings suggest that dietary nitrate improves diaphragm contractile properties independent of changes in abundance of Ca2+-release proteins or phosphorylation of myofibrillar proteins.


Assuntos
Diafragma , Nitratos , Animais , Suplementos Nutricionais , Camundongos , Contração Muscular , Qualidade de Vida
15.
Sci Rep ; 9(1): 15547, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664123

RESUMO

Chronic kidney disease (CKD) substantially increases the severity of peripheral arterial disease (PAD) symptomology, however, the biological mechanisms remain unclear. The objective herein was to determine the impact of CKD on PAD pathology in mice. C57BL6/J mice were subjected to a diet-induced model of CKD by delivery of adenine for six weeks. CKD was confirmed by measurements of glomerular filtration rate, blood urea nitrogen, and kidney histopathology. Mice with CKD displayed lower muscle force production and greater ischemic lesions in the tibialis anterior muscle (78.1 ± 14.5% vs. 2.5 ± 0.5% in control mice, P < 0.0001, N = 5-10/group) and decreased myofiber size (1661 ± 134 µm2 vs. 2221 ± 100 µm2 in control mice, P < 0.01, N = 5-10/group). This skeletal myopathy occurred despite normal capillary density (516 ± 59 vs. 466 ± 45 capillaries/20x field of view) and limb perfusion. CKD mice displayed a ~50-65% reduction in muscle mitochondrial respiratory capacity in ischemic muscle, whereas control mice had normal mitochondrial function. Hydrogen peroxide emission was modestly higher in the ischemic muscle of CKD mice, which coincided with decreased oxidant buffering. Exposure of cultured myotubes to CKD serum resulted in myotube atrophy and elevated oxidative stress, which were attenuated by mitochondrial-targeted therapies. Taken together, these findings suggest that mitochondrial impairments caused by CKD contribute to the exacerbation of ischemic pathology.


Assuntos
Membro Posterior , Isquemia , Mitocôndrias Musculares , Músculo Esquelético , Doenças Musculares , Estresse Oxidativo , Insuficiência Renal Crônica , Animais , Feminino , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
16.
Am J Physiol Cell Physiol ; 317(4): C665-C673, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314583

RESUMO

Diaphragm abnormalities in aging or chronic diseases include impaired mitochondrial respiration and H2O2 emission, which can be measured using saponin-permeabilized muscle fibers. Mouse diaphragm presents a challenge for isolation of fibers due to relatively high abundance of connective tissue in healthy muscle that is exacerbated in disease states. We tested a new approach to process mouse diaphragm for assessment of intact mitochondria respiration and ROS emission in saponin-permeabilized fibers. We used the red gastrocnemius (RG) as "standard" limb muscle. Markers of mitochondrial content were two- to fourfold higher in diaphragm (Dia) than in RG (P < 0.05). Maximal O2 consumption (JO2: pmol·s-1·mg-1) in Dia was higher with glutamate, malate, and succinate (Dia 399 ± 127, RG 148 ± 60; P < 0.05) and palmitoyl-CoA + carnitine (Dia 15 ± 5, RG 7 ± 1; P < 0.05) than in RG, but not different between muscles when JO2 was normalized to citrate synthase activity. Absolute JO2 for Dia was two- to fourfold higher than reported in previous studies. Mitochondrial JH2O2 was higher in Dia than in RG (P < 0.05), but lower in Dia than in RG when JH2O2 was normalized to citrate synthase activity. Our findings are consistent with an optimized diaphragm preparation for assessment of intact mitochondria in permeabilized fiber bundles. The data also suggest that higher mitochondrial content potentially makes the diaphragm more susceptible to "mitochondrial onset" myopathy. Overall, the new approach will facilitate testing and understanding of diaphragm mitochondrial function in mouse models that are used to advance biomedical research and human health.


Assuntos
Diafragma/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Musculares/metabolismo , Saponinas/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Respiração/efeitos dos fármacos
17.
Am J Physiol Cell Physiol ; 317(4): C701-C713, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291144

RESUMO

Chronic kidney disease (CKD) leads to increased skeletal muscle fatigue, weakness, and atrophy. Previous work has implicated mitochondria within the skeletal muscle as a mediator of muscle dysfunction in CKD; however, the mechanisms underlying mitochondrial dysfunction in CKD are not entirely known. The purpose of this study was to define the impact of uremic metabolites on mitochondrial energetics. Skeletal muscle mitochondria were isolated from C57BL/6N mice and exposed to vehicle (DMSO) or varying concentrations of uremic metabolites: indoxyl sulfate, indole-3-acetic-acid, l-kynurenine, and kynurenic acid. A comprehensive mitochondrial phenotyping platform that included assessments of mitochondrial oxidative phosphorylation (OXPHOS) conductance and respiratory capacity, hydrogen peroxide production (JH2O2), matrix dehydrogenase activity, electron transport system enzyme activity, and ATP synthase activity was employed. Uremic metabolite exposure resulted in a ~25-40% decrease in OXPHOS conductance across multiple substrate conditions (P < 0.05, n = 5-6/condition), as well as decreased ADP-stimulated and uncoupled respiratory capacity. ATP synthase activity was not impacted by uremic metabolites; however, a screen of matrix dehydrogenases indicated that malate and glutamate dehydrogenases were impaired by some, but not all, uremic metabolites. Assessments of electron transport system enzymes indicated that uremic metabolites significantly impair complex III and IV. Uremic metabolites resulted in increased JH2O2 under glutamate/malate, pyruvate/malate, and succinate conditions across multiple levels of energy demand (all P < 0.05, n = 4/group). Disruption of mitochondrial OXPHOS was confirmed by decreased respiratory capacity and elevated superoxide production in cultured myotubes. These findings provide direct evidence that uremic metabolites negatively impact skeletal muscle mitochondrial energetics, resulting in decreased energy transfer, impaired complex III and IV enzyme activity, and elevated oxidant production.


Assuntos
Transporte de Elétrons/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Oxirredutases/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Insuficiência Renal Crônica/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 316(4): L679-L690, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702345

RESUMO

Heart failure with reduced ejection fraction (HFREF) increases neutral sphingomyelinase (NSMase) activity and mitochondrial reactive oxygen species (ROS) emission and causes diaphragm weakness. We tested whether a systemic pharmacological NSMase inhibitor or short-hairpin RNA (shRNA) targeting NSMase isoform 3 (NSMase3) would prevent diaphragm abnormalities induced by HFREF caused by myocardial infarction. In the pharmacological intervention, we used intraperitoneal injection of GW4869 or vehicle. In the genetic intervention, we injected adeno-associated virus serotype 9 (AAV9) containing shRNA targeting NSMase3 or a scrambled sequence directly into the diaphragm. We also studied acid sphingomyelinase-knockout mice. GW4869 prevented the increase in diaphragm ceramide content, weakness, and tachypnea caused by HFREF. For example, maximal specific forces (in N/cm2) were vehicle [sham 31 ± 2 and HFREF 26 ± 2 ( P < 0.05)] and GW4869 (sham 31 ± 2 and HFREF 31 ± 1). Respiratory rates were (in breaths/min) vehicle [sham 61 ± 3 and HFREF 84 ± 11 ( P < 0.05)] and GW4869 (sham 66 ± 2 and HFREF 72 ± 2). AAV9-NSMase3 shRNA prevented heightening of diaphragm mitochondrial ROS and weakness [in N/cm2, AAV9-scrambled shRNA: sham 31 ± 2 and HFREF 27 ± 2 ( P < 0.05); AAV9-NSMase3 shRNA: sham 30 ± 1 and HFREF 30 ± 1] but displayed tachypnea. Both wild-type and ASMase-knockout mice with HFREF displayed diaphragm weakness. Our study suggests that activation of NSMase3 causes diaphragm weakness in HFREF, presumably through accumulation of ceramide and elevation in mitochondrial ROS. Our data also reveal a novel inhibitory effect of GW4869 on tachypnea in HFREF likely mediated by changes in neural control of breathing.


Assuntos
Diafragma/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Debilidade Muscular/prevenção & controle , RNA Interferente Pequeno/genética , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Diafragma/enzimologia , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Masculino , Camundongos , Camundongos Knockout , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Ratos , Ratos Wistar , Esfingomielina Fosfodiesterase/deficiência , Volume Sistólico/genética , Volume Sistólico/fisiologia
19.
Front Physiol ; 9: 1496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429796

RESUMO

Hyperthermia and dehydration can occur during exercise in hot environments. Nevertheless, whether elevations in extracellular osmolality contributes to the increased skeletal muscle tension, sarcolemmal injury, and oxidative stress reported in warm climates remains unknown. We simulated osmotic and heat stress, in vitro, in mouse limb muscles with different fiber compositions. Extensor digitorum longus (EDL) and soleus (SOL) were dissected from 36 male C57BL6J and mounted at optimal length in tissue baths containing oxygenated buffer. Muscles were stimulated with non-fatiguing twitches for 30 min. Four experimental conditions were tested: isotonic-normothermia (285 mOsm•kg-1 and 35°C), hypertonic-normothermia (300 mOsm•kg-1 and 35°C), isotonic-hyperthermia (285 mOsm•kg-1 and 41°C), and hypertonic-hyperthermia (300 mOsm•kg-1 and 41°C). Passive tension was recorded continuously. The integrity of the sarcolemma was determined using a cell-impermeable fluorescent dye and immunoblots were used for detection of protein carbonyls. In EDL muscles, isotonic and hypertonic-hyperthermia increased resting tension (P < 0.001). Whereas isotonic-hyperthermia increased sarcolemmal injury in EDL (P < 0.001), this effect was absent in hypertonic-hyperthermia. Similarly, isotonic-hyperthermia elevated protein carbonyls (P = 0.018), a response not observed with hypertonic-hyperthermia. In SOL muscles, isotonic-hyperthermia also increases resting tension (P < 0.001); however, these effects were eliminated in hypertonic-hyperthermia. Unlike EDL, there were no effects of hyperthermia and/or hyperosmolality on sarcolemmal injury or protein carbonyls. Osmolality selectively modifies skeletal muscle response to hyperthermia in this model. Fast-glycolytic muscle appears particularly vulnerable to isotonic-hyperthermia, resulting in elevated muscle tension, sarcolemmal injury and protein oxidation; whereas slow-oxidative muscle exhibits increased tension but no injury or protein oxidation under the conditions and duration tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...